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X-ray probe of laser-manipulated atoms

B Pump-probe-experiments with lasers and x-rays since the advent of synchrotron
radiation sources

Mostly weak laser
B Review: Wuilleumier, Meyer, J. Phys. B 39, R425 (2006)

B Pump: valence ionization by linearly polarized laser

— Electrons are ejected predominantly along the laser axis

— Hole orbital is aligned in ion
B Probe: electron excitation from K-shell to hole orbital

— Background free; only absorption for ionized atoms

— Different photoabsorption for parallel and perpendicular x-rays
B Krypton atom: Young et al., Phys. Rev. Lett. 97, 083601 (2006)
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http://dx.doi.org/10.1103/PhysRevLett.97.083601

Quantum state-resolved EUV probe of xenon ions

Pump: Laser ionization of 5p valence electron of xenon atoms

Probe: Excitation of 4d core electron to 5p valence hole for parallel and
perpendicular polarizations

B Experiment: femtosecond high-order harmonic transient absorption
spectroscopy of a xenon atom

Theory: xenon is a heavy atom with appreciable spin-orbit coupling
Strong-field tunnel ionization of 5p valence electron of xenon atoms
lonization produces a distribution of |; 5 > quantum states
Probabilities to find the accessible quantum states are calculated

[Loh et al., Phys. Rev. Lett. 98, 143601 (2007)]



http://dx.doi.org/10.1103/PhysRevLett.98.143601

X-ray probe of laser-dressed atoms

B Atoms are in the field of an
optical laser

B Probed by x-rays

B |aser dressing barely influenced
by x-rays

[Buth, Santra, Phys. Rev. A 75, 033412 (2007)]
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http://dx.doi.org/10.1103/PhysRevA.75.033412

Laser characteristics

B Assume an 800 nm (Ti:Sapphire) laser system

B Laser is of moderately high intensity 10" Wem™
— Atomic electrons are neither excited nor ionized
— Only final states are modified

2

B Keldysh parameter for Rydberg orbitals (here Ne 3p)

I,
= 2 =15~1
Y \/2Up

B Strong field regime
[y <1 adiabatic tunneling picture; y > 1 perturbative multiphoton process]

B Multiphoton physics
B Need sophisticated theoretical treatment!

[Buth, Santra, Young, Phys. Rev. Lett. 98, 253001 (2007)]
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Quantum electrodynamic description of atoms

B Hartree-Fock-Slater one-electron model
[radial part of the wave function is given in a flexible finite-element basis]

A

1 —
HAT:—EVZ-F VHFS(I”)

B Non-relativistic quantum electrodynamics in electric dipole approximation
B Free electromagnetic field for the two-modes (laser plus x-rays)

A

_ AT+ A A+ A

B [nteraction of electrons with laser- or x-ray-light A=1, X

A

> e —1 - A - % A+

[Buth, Santra, Phys. Rev. A 75, 033412 (2007)]
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Resonance energies using complex absorbing potentials

B Complex absorbing potential (CAP) W added to doE)o,
the Hamiltonian

B CAP derived from smooth exterior complex scaling 1
B Spectrum of Hamiltonian is modified by CAP

B Decaying state becomes a bound state with a 14

complex Siegert energy 2

I
— 4 >

Eres _ER 1 0 £

B Wave function
L
—1FE ¢ —iExt 9
yoce oC e c

B Resonance position ER and width [ : lifetime —

r
[Buth, Santra, Phys. Rev. A 75, 033412 (2007)]
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Laser-atom interaction

B Hamiltonian for the atom in the laser field [no x-rays so far]

A A

Hy=H, +H +H +W

B Direct product basis set of atomic orbitals and laser Fock states
D™ =W > (>

B Diagonalization of matrix yields laser-dressed atomic energy levels

(H(Om))nlu,n’l’u':<¢nlmu|HO|¢n’l'mu’>

(m) =(m) _ y=(m) =(m)
H; c. =E; c;

[Buth, Santra, Phys. Rev. A 75, 033412 (2007)]
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X-ray photon absorption

Decaying core excited state with complex Siegert energy
Relaxes [Kr 230 as, Ne 2.3 fs] by Auger decay and x-ray fluorescence
Decay of 1s core hole is accounted for by E\"'=FE ’g’)—if‘f’s‘plz

X-ray probe H ,=H, is a weak, one-photon process
=> Non-Hermitian Rayleigh-Schrodinger perturbation theory

Initial ground state |/ > and laser-dressed core-excited final states |F'">

E1,0:<1|ﬁ0|]>’ E1,1:<I|H1|]>:O

(m) (m) 7

(m)
EI,O_EF,O JX

(I H
E1,2:Z 1
F,m

r=-21ImlE, +E, +E,,l,

[Buth, Santra, Phys. Rev. A 75, 033412 (2007) and Buth, Santra, Cederbaum,
Phys. Rev. A 69, 032505 (2004)]



http://dx.doi.org/10.1103/PhysRevA.75.033412
http://dx.doi.org/10.1103/PhysRevA.69.032505

Total x-ray absorption cross section

O-ls(wX’ 9LX):O-1||s(wX) COSZ(‘(}LX) + O-IJ;(wX) Sinz(gLX)

O-lns(wX)EOJﬁs(wX)’ O-IJ;(wX)EOJle(wX)
. 81 3 (dy)

o (Wy)=— xw, Im
s (0x) 3 * F E@_Els_wx

Atom is cylindrically deformed along the laser polarization axis

Dependence on angle between polarizations Jix

Atomic properties described by o] (wy), o (wy)

Electron correlations and non-dipole effects ignored
=> manifest in deviations from the angular behavior

[Buth, Santra, Phys. Rev. A 75, 033412 (2007)]
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Krypton above the K-edge

B Without laser dressing;
only x-ray absorption —
B Above edge Bethe and g '
Salpeter give =
o R
O_ls(wX) — ls,:.e. D:E- 10__ =
(W 5 |
B Non-linear fit yields n=2.63 % sl — Oyq n1{0y) -
° Tl —- Fittoo,, ., o,
g8 .~ ° —
® For hydrogen n=§=2.6
J ! | ! ! | ! ! |
B Test of Hartree-Fock-Slater 14060 15900 oo 17000

_ > X-ray photon energy w, [eV]
model, radial finite-element

basis, and CAP method

[Buth, Santra, Phys. Rev. A 75, 033412 (2007)]
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Krypton K-edge

B [aser dressing with 800 nm
at 10° Wem™

B [aser influences cross
section in the vicinity of the
K-edge

B Dependence on the
polarization between laser
and x-rays

B Appreciable effect (20%)

Cross section o, (w,) [kb]

15

14320 14324 14328
X-ray photon energy w, [eV]

[Buth, Santra, Phys. Rev. A 75, 033412 (2007)]
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Differences of cross sections at the krypton K-edge

B |mpact revealed by looking T T — T T
at differences 05 f \ j
T | ) ]
B Largest effect for parallel é o ]
polarization in relation to S sl E
the case without laser 3 I
5 -1.0F —
B Shape understood: S f
transition 1s — 5p is 5 150 -
suppressed by laser. 5
Oscillator strength is [
redistributed to 5s and 4d 20F | | | |,

14316 14320 14324 14328 14332
X-ray photon energy o, [eV]

B Reason for moderate
effect: the width I,.=27¢eV

[Buth, Santra, Phys. Rev. A 75, 033412 (2007)]
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Neon K-edge

B Rydberg series clearly 1500 F No laser dressing —
. i g _
resolved due to a lower line = 10001 -
i — =,
width ' =0.27 eV = ool -
8 | =" | ]
B Big effect of laser dressing o 15001 Polarization 6, = 0° —
S 1000|- -
Q
=
B For parallel polarizations 2 500 —
transparency at the 2 I — I
1s— 3p transition e Polarization 6, =90°.
S 1000 -
£ [ _
. 500 _
B Suppression but no o N | |

transparency for 864 866 868  8/0 872 874
perpendicular polarizations Photon energy [eV]

B Absorption and emission of up to 20 laser photons to converge calculations

[Buth, Santra, Young, Phys. Rev. Lett. 98, 253001 (2007)]
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Electromagnetically induced transparency (EIT)

B Gas is opaque for light at an intraatomic transition
B Gas becomes transparent for this light by laser-
dressing c
0
=S
B So far EIT for optical wavelengths has been studied e
B We investigate EIT for x-rays é’
B Review: Fleischhauer, Imamoglu, Marangos,
Rev. Mod. Phys. 77, 633 (2005)
Frequency
B Extremely versatile tool in quantum optics
— Nonlinear optics — Probe only
— Atomic clocks — Laser on

— Quantum computer

a .
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http://dx.doi.org/10.1103/RevModPhys.77.633

/A-type three-level model for EIT

B EIT is understood in terms of a A -type three- a r
level model @L:: )
b
My

& J

B Two-color light
— Probe transition c—a
— Laser coupling a—b

B |n resonance transition without coupling laser
B Laser resonant with transition within line widths
B Coupling laser dresses levels a, b

— Rabi flopping

— Autler-Townes doublet c

B Destructive interference

[Buth, Santra, Young, Phys. Rev. Lett. 98, 253001 (2007)]
A
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Optical properties of EIT media

B The EIT dramatically changes the
refraction of the medium

B Absorption vanishes on resonance
=> ideal for optics

Absorption

B Phase velocity speed of light in vacuum

B Group velocity substantially reduced \\
=> slow light 17 m/s [Hau et al., Nature S \
397, 594 (1999)] in a Bose-Einstein = !
Condensate of sodium atoms ©
5 \
L nd \
B Few photons; light stored in excitations \

Frequency
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EIT in strontium

B First observation by Boller, Imamoglu, Harris,
Phys. Rev. Lett. 66, 2593 (1991) in strontium

B Probe laser with intensity 10° Wem ™

2

B Laser coupling with intensity 1.5 10" W em™

B Upper level is autoionizing with lifetime 4.4 ps larger by more than three
orders of magnitude than lifetime of neon core hole

B Transmission change fromexp(—1) to exp(—20) by coupling laser

Argonne
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/A-type EIT model for neon

B Assume dominant 1500 - U

. | No laser dressing _

physics results from 10001 -
three levels of neon: 500

ls, 3s, and 3p.
| | I | | | |
1500 | ' Polarization 6, = 0° ~
B Parameters are level 1000 — Gb éniltio _
—-— O e

energies and widths;
dipole moments between
3p and ls, 3s.

3

1000~ -

Photoabsorption cross sectian [kb]

%’)

B Other levels contribute

864 866 868 870 872 874
B Multiphoton processes Photon energy [eV]

[Buth, Santra, Young, Phys. Rev. Lett. 98, 253001 (2007)]
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Polarizability of laser-dressed neon atoms

. . . I | I l ' |
] Atomlc_polarlzablllty 0.002 - No laser dressing —
proportional to real part of [ s ]
the index of refraction 0.000 - — Ab initio —
- | Yl — - Model -

P o L | [
) ] o T ' ! . AP
B EIT at optical frequencies > 00021 Polarization 8,, = 0°
leads to a large change in E o N —— -
: . . S 0.000 T N _
the atomic polarizability 5 i S _

S I . |

0.002 - | Polarization 6 _ 90°
M Instead for x-rays the e N X -
. . ag . ____—_-_."b.‘ —_—
atomic polququlllty with 0.000 N -
laser dressing is lower than L | o
without 864 866 868 870 872 874

Photan energy [eV]

[Buth, Santra, Young, Phys. Rev. Lett. 98, 253001 (2007)]
A |

Argonne


http://dx.doi.org/10.1103/PhysRevLett.98.253001

Laser-intensity dependence for parallel polarizations

B Crude estimate for the 1000|- | | ' T
laser intensity Q[>T T 800 —1=10"w/em’| -
to see EIT yields: = eo0]- -

g 400|
Y 5 400
I[,>4.3X10 : 2 200 .
cm G L < L C
§ 1000 | | | -
%i 800_ _I=1012W/cm2 )

B The cross section £ so0f N
depends crucially on the E 200l -
laser intensity o -

200{- -
0 | h . | | | | | |
B Main features persist o4 86 g8 80 82 8

. . Y Photon energy [eV]
even if the intensity is

lowered by a factor of 10

[Buth, Santra, Young, Phys. Rev. Lett. 98, 253001 (2007)]
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Experimental feasibility

[Buth, Santra, Young, Phys. Rev. Lett. 98, 253001 (2007)]
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Number density 10" atoms cm " for characteristic absorption length of 1 cm
EIT for x-rays for pulse shaping of the intensity envelope

Dispersion of 21T after 1 cm requires 10" atoms cm ™
Hard to use as an experimental tool

X-ray pulses must be shorter than laser pulse to probe laser-dressed atom

Ti:Sapphire laser system produces pulses with energy,l mJ waist 300 um
and duration 140 fs at the intensity 10> Wem ™2

Need ultrafast slicing source for neon experiment

Weak dependence on dressing-laser wavelength
[for a variation of 30% there is still EIT]

A
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Schematic experimental setup of two-color neon experiment

® Overlap x-ray and laser beams both in space and time

Gas cell
3 torr —_
X-rays
¢ 100um
APD
Solar blind ]
Proportional mode Si;N;
1ns, 0.2 mm APD x 3 Laser mirror
Solar blind
Geiger mode
20ns, 1cm

Inside a 8"cube

for pumping speed 1000l/s
Apertureimm, cell @10 torr
base pressure ~107 torr

-&
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Conclusion

M X-ray probe of laser-dressed atom is described using Hartree-Fock-Slater
approximation and nonrelativistic quantum electrodynamics

Laser dressing causes strong field multiphoton physics
X-ray probe is treated as a one-photon process
Formalism suitable to investigate multiphoton x-ray processes for x-ray FELs

Laser influences the photoabsorption cross section of krypton and neon
Large width of core-excited states yields a moderate effect in krypton
B Find electromagnetically induced transparency effect in neon

EIT effect can be measured in neon
High intensity laser
Need ultrafast x-rays due to ultrashort laser pulses
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