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1.1 First principles methods

• Schrödinger equation with the full 
electronic Hamiltonian 

• Independent particle/quasi-particle theories:
– Ab initio (wavefunction based): Hartree-Fock
– Density functional theory: time-independent 

DFT
• But there are many-body effects beyond the 

one-particle picture!
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1.2a Hydrogen fluoride molecule

H

F

• The Hartree-Fock 
approximation 
yields ionization 
potentials 
(Koopmans’ 
theorem)

• Many-body 
effects are 
neglected
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1.2b Hydrogen fluoride molecule

H

F

• Many-body effects 
are dominant for 
the inner valence 
region in 
molecules

• Electronic 
resonances like the 
Auger effect can 
be understood 
more deeply for 
molecules

[Buth, Santra, Cederbaum, J. Chem. Phys. 119 10575 (2003)]
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1.3 Hartree-Fock band structure

• Hydrogen fluoride 
polymer

• Calculations are 
routine

• CRYSTAL03 or 
WANNIER98

∞
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2.1 Many-Body Green’s Functions

• Particle propagator

• Ground state energy 
• Ground state expectation values of 

one-particle operators
• Excitation energies, i.e. the band 

structure
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2.2 Feynman diagrams

• Time-dependent perturbation theory for 
residual interaction

• Explicit    -th order expressions for the 
Green’s function

• Sum of Feynman diagrams to      order by 
the Dyson equation
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2.3 Evaluation of diagrams
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• Evaluation of diagrams with a 

Fourier transformation to energy 
variables

[Cederbaum, Domcke: Adv. Chem. Phys. 36 205 (1977)]
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• Static and dynamic self-energy

• Analytic structure of             [Schirmer, 
Cederbaum, Walter: Phys. Rev. A, 28 1237 (1983)]

•   -th order approximation to ADC matrices

 

2.4a Algebraic diagrammatic construction
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• Geometric series expansion

• Pole search by diagonalizing 
• Infinite partial summation of diagrams

2.4b Algebraic diagrammatic construction
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2.5 Correlated band structures

• Band structures are calculated in terms of a 
Hermitian eigenvalue problem

• Band structure matrix
• Sparse large-scale eigenvalue problem
• Lanczos eigenvalue solver
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3.1 Wannier transformation

• Electron correlation is 
local
– Bloch orbitals are 

delocalized
– Wannier orbitals are 

local
• Generalized Wannier 

transformation

pkk
N

R Rk-

k p
p

 



i

0

e)(1 ∑ ∑= σσ U



11.10.2004 Christian Buth Wissenschaftskolleg Wien 15

3.2 CO-ADC in Wannier orbitals

• Self-energy depends on a single crystal 
momentum vector

• Express the    -dependent self-energy in 
terms of Wannier orbitals
– Three schemes are customary in Literature
– Differ by the degree of exploitation of 

translational symmetry 
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3.3 Large cluster

• Parallelepiped of       unit cells
• “Molecular” calculation

• Brillouin zone is discretized by only      points
• Finite size effects

3
0N

3
0N
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3.4 Translational symmetry of self-energy

• Choose a unit cell to be origin cell
• Excitations relative to origin cell

• Excitations are still redundant
• Successfully applied in Dresden
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3.5 Full use of translational symmetry

• Exploit translational symmetry of all 
matrices in

• Only excitations not related by 
translational symmetry are included

• No redundancy left
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4.1 Configuration Selection

• Crystals are infinite => select excitations
• Dynamical selection for each crystal anew

• Second order self-energy to select configurations
• Definition of degeneracy
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5.1 CO-ADC code

• CO-ADC(2) code based on Hartree-Fock 
calculations with WANNIER98

• Comparison with ADC(2) for molecules
• Generalized Wannier transformation => Fock 

matrix is no longer diagonal due to band mixing   
by

• Perturbative treatment of off-diagonal Fock matrix 
elements
– Second order treatment satisfactory
– Third order treatment excellent
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5.2 Correlated band structure of (HF)∞

• Excitations from 
origin cell only

• Band widths are 
increased by 
electron 
correlation

• Basis set           
cc-pVDZ

(*) Calculation by Viktor Bezugly
[Theory: Viktor Bezugly, Uwe Birkenheuer: arXiv:cond-mat/0407382]
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5.3 Correlated band structure of LiF

• Excitations from 
origin cell only

• Upwards shift of 
valence bands

• Conduction band 
unchanged 

• Minimal basis set 
STO-6G
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5.4 Correlated band structure of LiF

• Excitations from 
19 unit cells

• Shift of conduction 
and valence bands 
increased

• Band widths are 
increased by 
electron correlation

• Good agreement 
with experiments
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6.1 Conclusion

• Ab initio methods facilitate to predict 
properties of solids

• Electron correlation plays a significant role
• Translational symmetry
• Configuration selection
• CO-ADC is a simple method
• Systematically improvable CO-ADC(2), 

CO-ADC(3), …
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6.2 Outlook

• Strong correlation
• Electronic resonances (Auger effect)
• No metals! 

– Wannier orbitals decay extremely slowly
– Occupation numbers dependent on 

crystal momentum
– Need to exchange the one-particle basis
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